jueves, 13 de mayo de 2010

La frontera del mundo de los átomos


Si algo distingue a la mecánica cuántica de la física que todos aprendemos en la escuela (llamada física clásica) es que no se aplica a los objetos macroscópicos. La mecánica cuántica se construyó a lo largo de las primeras décadas del siglo XX para describir el comportamiento de los átomos, las moléculas y las partículas de luz. Para sorpresa de los físicos de la época, la teoría implicaba, al parecer, que los objetos atómicos podían estar en muchos lugares
al mismo tiempo, y en general, hacer cosas contradictorias simultáneamente, como desintegrarse y no desintegrarse u orientarse al derecho y al revés en un campo magnético. Por suerte, los objetos cotidianos no presentaban este comportamiento, conocido técnicamente como superposición de estados coherentes.

Pero, ¿por qué? Si los objetos cotidianos están hechos de átomos y moléculas, ¿no deberían heredar las propiedades de éstos? La mecánica cuántica, la teoría más fundamental de la física, tendría que ser válida para todas las cosas, sin importar su tamaño. El problema de la transición cuántico- clásica se resolvió teóricamente en los años 60, cuando el físico H. Dieter Zeh señaló que las superposiciones de estados coherentes son tan delicadas, que sólo se pueden observar en átomos completamente aislados, sin el menor contacto con su entorno. El más leve soplo de energía las destruye. Los objetos macroscópicos, hechos de números inimaginables de átomos, están mucho más expuestos a contingencias que los átomos individuales. Es imposible aislarlos de su entorno y por eso nunca los vemos en superposiciones coherentes. Los físicos se interesaron entonces en determinar de qué tamaño tenía que ser un objeto para dejar de ser cuántico.

En los años 30, las peculiaridades de la mecánica cuántica inquietaron a algunos físicos, entre ellos Albert Einstein y Erwin Schrödinger. Éste último ideó un experimento mental para visualizar lo absurdo que le parecía extender el comportamiento cuántico a los objetos macroscópicos: el experimento del gato de Schrödinger. El físico concluyó que, si la mecánica cuántica era correcta, en ciertas circunstancias un gato, por ejemplo, podría estar vivo y muerto al mismo tiempo.

Hasta hace poco, el objeto más grande en el que se había observado comportamiento puramente cuántico era una molécula de 60 átomos, conocida como buckminsterfullereno. Pero en el número del 17 de marzo de la revista Nature unos investigadores de la Universidad de California en Santa Bárbara informan que lograron poner en una superposición coherente un objeto suficientemente grande para verse sin ayuda de instrumentos. El objeto es una especie de varilla vibradora de aluminio que mide unas 40 micras de longitud y está formada por alrededor de un billón de átomos. La varilla puede vibrar 6 000 millones de veces por segundo. Los investigadores, dirigidos por Andrew Cleland, redujeron la frecuencia de las vibraciones de este resonador al valor mínimo permitido por la mecánica cuántica bajándole la temperatura hasta menos de un décimo de grado sobre cero absoluto (-273 º C), lo que ya es una proeza. Manipulando el objeto por medio de un circuito electrónico sujeto a las leyes de la mecánica cuántica, pudieron ponerlo en un estado en que está vibrando y quieto al mismo tiempo. Cleland da a entender que hay buenas razones para probar las leyes de la mecánica cuántica con objetos cada vez más grandes. Al mismo tiempo reconoce que no se le ocurre ninguna aplicación práctica de su resonador cuántico. No tiene importancia. Este experimento ayudará a disipar el misterio que aún envuelve la frontera entre el mundo cuántico y el mundo cotidiano.

0 comentarios: